Computational logics and verification techniques of multi-agent commitments: survey

Author:

El Menshawy Mohamed,Bentahar Jamal,El Kholy Warda,Yolum Pinar,Dssouli Rachida

Abstract

AbstractAgent communication languages (ACLs) are fundamental mechanisms that enable agents in multi-agent systems totalk, communicate with each other in order to satisfy their individual and social goals in a cooperative and competitive manner. Social approaches are advocated to overcome the shortcomings of ACL semantics delineated by using mental approaches in the figure of agents’ mental notions. Over the last two decades,socialcommitments have been the subject of considerable research in some of those social approaches as they provide a powerful representation for modeling and reasoning upon multi-agent interactions in the form of mutual contractual obligations. They particularly provide a declarative, flexible, verifiable, and social semantics for ACL messages while respecting agents’ autonomy, heterogeneity, and openness.In this manuscript, we go through prominent and predominate proposals in the literature to explore the state of the art on how temporal logics can be devoted to define a formal semantics for ACL messages in terms of social commitments and associated actions. We explain each proposal and point out if and how it meetssevencrucial criteria, four of them introduced by Munindar P. Singh to have a well-defined semantics for ACL messages. Far from deciding the best proposal, our aim is to present the advantages (strengths) and limitations of those proposals to designers and developers using a concrete running example and to compare between them, so that they can make the best choice with regard to their needs. We explore and evaluate current specification languages and different verification techniques that have been discussed within those proposals to, respectively, specify and verify commitment-based protocols. We also investigate logical languages of actions advocated to specify, model, and execute commitment-based protocols in other contributed proposals. Finally, we suggest some solutions that can contribute to address the identified limitations.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maintenance commitments: Conception, semantics, and coherence;Artificial Intelligence;2023-11

2. Transformation-based model checking temporal trust in multi-agent systems;Journal of Systems and Software;2022-10

3. Nova : Value-based Negotiation of Norms;ACM Transactions on Intelligent Systems and Technology;2021-08

4. A Formal Treatment of Contract Signature;IEEE Transactions on Services Computing;2021

5. Model checking real-time conditional commitment logic using transformation;Journal of Systems and Software;2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3