A utility-based analysis of equilibria in multi-objective normal-form games

Author:

Rădulescu Roxana,Mannion PatrickORCID,Zhang Yijie,Roijers Diederik M.,Nowé Ann

Abstract

Abstract In multi-objective multi-agent systems (MOMASs), agents explicitly consider the possible trade-offs between conflicting objective functions. We argue that compromises between competing objectives in MOMAS should be analyzed on the basis of the utility that these compromises have for the users of a system, where an agent’s utility function maps their payoff vectors to scalar utility values. This utility-based approach naturally leads to two different optimization criteria for agents in a MOMAS: expected scalarized returns (ESRs) and scalarized expected returns (SERs). In this article, we explore the differences between these two criteria using the framework of multi-objective normal-form games (MONFGs). We demonstrate that the choice of optimization criterion (ESR or SER) can radically alter the set of equilibria in a MONFG when nonlinear utility functions are used.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference48 articles.

1. Zintgraf, L. M. , Roijers, D. M. , Linders, S. , Jonker, C. M. & Nowé, A. 2018. Ordered preference elicitation strategies for supporting multi-objective decision making. In Proceedings of the 17th International Conference on Autonomous Agents and Multi-Agent Systems, 1477–1485. International Foundation for Autonomous Agents and Multiagent Systems.

2. Zintgraf, L. M. , Kanters, T. V. , Roijers, D. M. , Oliehoek, F. A. & Beau, P. 2015. Quality assessment of MORL algorithms: a utility-based approach. In Benelearn 2015: Proceedings of the Twenty-Fourth Belgian-Dutch Conference on Machine Learning.

3. Mannion, P. , Mason, K. , Devlin, S. , Duggan, J. & Howley, E. 2016b. Multi-objective dynamic dispatch optimisation using multi-agent reinforcement learning. In Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2016b.

4. Non-Cooperative Games

5. Walraven, E. & Spaan, M. T. J. 2016. Planning under uncertainty for aggregated electric vehicle charging with renewable energy supply. In Proceedings of the European Conference on Artificial Intelligence, 904–912.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep reinforcement learning for multi-objective game strategy selection;Computers & Operations Research;2024-08

2. Correlation of Multiple Strategic Sources Decreases Their Age of Information Anarchy;IEEE Transactions on Circuits and Systems II: Express Briefs;2024-07

3. Robust Multiobjective Reinforcement Learning Considering Environmental Uncertainties;IEEE Transactions on Neural Networks and Learning Systems;2024

4. Subgame-Consistent Cooperative Equilibria of Multi-Objective Dynamic Games;International Game Theory Review;2023-12-15

5. On nash equilibria in normal-form games with vectorial payoffs;Autonomous Agents and Multi-Agent Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3