Toll-based reinforcement learning for efficient equilibria in route choice

Author:

Ramos Gabriel de O.ORCID,Da Silva Bruno C.,Rădulescu Roxana,Bazzan Ana L. C.,Nowé Ann

Abstract

Abstract The problem of traffic congestion incurs numerous social and economical repercussions and has thus become a central issue in every major city in the world. For this work we look at the transportation domain from a multiagent system perspective, where every driver can be seen as an autonomous decision-making agent. We explore how learning approaches can help achieve an efficient outcome, even when agents interact in a competitive environment for sharing common resources. To this end, we consider the route choice problem, where self-interested drivers need to independently learn which routes minimise their expected travel costs. Such a selfish behaviour results in the so-called user equilibrium, which is inefficient from the system’s perspective. In order to mitigate the impact of selfishness, we present Toll-based Q-learning (TQ-learning, for short). TQ-learning employs the idea of marginal-cost tolling (MCT), where each driver is charged according to the cost it imposes on others. The use of MCT leads agents to behave in a socially desirable way such that the is attainable. In contrast to previous works, however, our tolling scheme is distributed (i.e., each agent can compute its own toll), is charged a posteriori (i.e., at the end of each trip), and is fairer (i.e., agents pay exactly their marginal costs). Additionally, we provide a general formulation of the toll values for univariate, homogeneous polynomial cost functions. We present a theoretical analysis of TQ-learning, proving that it converges to a system-efficient equilibrium (i.e., an equilibrium aligned to the system optimum) in the limit. Furthermore, we perform an extensive empirical evaluation on realistic road networks to support our theoretical findings, showing that TQ-learning indeed converges to the optimum, which translates into a reduction of the congestion levels by 9.1%, on average.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference88 articles.

1. Zinkevich, M. 2003. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the Twentieth International Conference on Machine Learning, AAAI Press, 928–936.

2. Zhang, J. , Pourazarm, S. , Cassandras, C. G. & Paschalidis, I. C. 2016. The price of anarchy in transportation networks by estimating user cost functions from actual traffic data. In 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 789–794.

3. Trial-and-error implementation of marginal-cost pricing on networks in the absence of demand functions

4. Collective intelligence, data routing and Braess’ paradox;Wolpert;Journal of Artificial Intelligence Research,2002

5. Finding theKShortest Loopless Paths in a Network

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3