Learning self-play agents for combinatorial optimization problems

Author:

Xu RuiyangORCID,Lieberherr Karl

Abstract

Abstract Recent progress in reinforcement learning (RL) using self-play has shown remarkable performance with several board games (e.g., Chess and Go) and video games (e.g., Atari games and Dota2). It is plausible to hypothesize that RL, starting from zero knowledge, might be able to gradually approach a winning strategy after a certain amount of training. In this paper, we explore neural Monte Carlo Tree Search (neural MCTS), an RL algorithm that has been applied successfully by DeepMind to play Go and Chess at a superhuman level. We try to leverage the computational power of neural MCTS to solve a class of combinatorial optimization problems. Following the idea of Hintikka’s Game-Theoretical Semantics, we propose the Zermelo Gamification to transform specific combinatorial optimization problems into Zermelo games whose winning strategies correspond to the solutions of the original optimization problems. A specially designed neural MCTS algorithm is then introduced to train Zermelo game agents. We use a prototype problem for which the ground-truth policy is efficiently computable to demonstrate that neural MCTS is promising.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference25 articles.

1. Simple statistical gradient-following algorithms for connectionist reinforcement learning

2. Gilmer, J. , Schoenholz, S. S. , Riley, P. F. , Vinyals, O. & Dahl, G. E. 2017. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning 70, 1263–1272. JMLR. org.

3. Battaglia, P. W. , Hamrick, J. B. , Bapst, V. , Sanchez-Gonzalez, A. , Zambaldi, V. , Malinowski, M. , Tacchetti, A. , Raposo, D. , Santoro, A. , Faulkner, R. , Gulcehre, C. , Song, F. , Ballard, A , Gilmer, J. , Dahl, G. , Vaswani, A. , Allen, K. , Nash, C. , Langston, V. , Dyer, C. , Heess, N , Wierstra, D. , Kohli, P. , Botvinick, M. , Vinyals, O. , Li, Y. & Pascanu, R. 2018. Relational inductive biases, deep learning, and graph networks. arXiv preprint .

4. General game playing: Overview of the AAAI competition;Genesereth;AI Magazine,2005

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3