Partitioning strategies for distributed association rule mining

Author:

COENEN FRANS,LENG PAUL

Abstract

In this paper a number of alternative strategies for distributed/parallel association rule mining are investigated. The methods examined make use of a data structure, the T-tree, introduced previously by the authors as a structure for organizing sets of attributes for which support is being counted. We consider six different approaches, representing different ways of parallelizing the basic Apriori-T algorithm that we use. The methods focus on different mechanisms for partitioning the data between processes, and for reducing the message-passing overhead. Both ‘horizontal’ (data distribution) and ‘vertical’ (candidate distribution) partitioning strategies are considered, including a vertical partitioning algorithm (DATA-VP) which we have developed to exploit the structure of the T-tree. We present experimental results examining the performance of the methods in implementations using JavaSpaces. We conclude that in a JavaSpaces environment, candidate distribution strategies offer better performance than those that distribute the original dataset, because of the lower messaging overhead, and the DATA-VP algorithm produced results that are especially encouraging.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3