Abstract
AbstractSafety-critical software must be thoroughly verified before being exploited in commercial applications. In particular, any TCAS (Traffic Alert and Collision Avoidance System) implementation must be verified against safety properties extracted from the anti-collision theory that regulates the controlled airspace. This verification step is currently realized with manual code reviews and testing. In our work, we explore the capabilities of Constraint Programming for automated software verification and testing. We built a dedicated constraint solving procedure that combines constraint propagation with Linear Programming to solve conditional disjunctive constraint systems over bounded integers extracted from computer programs and safety properties. An experience we made on verifying a publicly available TCAS component implementation against a set of safety-critical properties showed that this approach is viable and efficient.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Software
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献