Design patterns for modeling first-order expressive Bayesian networks

Author:

Locher MarkORCID,Laskey Kathryn B.,Costa Paulo C. G.ORCID

Abstract

Abstract First-order expressive capabilities allow Bayesian networks (BNs) to model problem domains where the number of entities, their attributes, and their relationships can vary significantly between model instantiations. First-order BNs are well-suited for capturing knowledge representation dependencies, but literature on design patterns specific to first-order BNs is few and scattered. To identify useful patterns, we investigated the range of dependency models between combinations of random variables (RVs) that represent unary attributes, functional relationships, and binary predicate relationships. We found eight major patterns, grouped into three categories, that cover a significant number of first-order BN situations. Selection behavior occurs in six patterns, where a relationship/attribute identifies which entities in a second relationship/attribute are applicable. In other cases, certain kinds of embedded dependencies based on semantic meaning are exploited. A significant contribution of our patterns is that they describe various behaviors used to establish the RV’s local probability distribution. Taken together, the patterns form a modeling framework that provides significant insight into first-order expressive BNs and can reduce efforts in developing such models. To the best of our knowledge, there are no comprehensive published accounts of such patterns.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3