Parallel heuristic search in forward partial-order planning

Author:

Sapena OscarORCID,Torreño AlejandroORCID,Onaindía EvaORCID

Abstract

AbstractMost of the current top-performing planners are sequential planners that only handle total-order plans. Although this is a computationally efficient approach, the management of total-order plans restrict the choices of reasoning and thus the generation of flexible plans. In this paper, we present FLAP2, a forward-chaining planner that follows the principles of the classical POCL (Partial-Order Causal-Link Planning) paradigm. Working with partial-order plans allows FLAP2 to easily manage the parallelism of the plans, which brings several advantages: more flexible executions, shorter plan durations (makespan) and an easy adaptation to support new features like temporal or multi-agent planning. However, one of the limitations of POCL planners is that they require far more computational effort to deal with the interactions that arise among actions. FLAP2 minimizes this overhead by applying several techniques that improve its performance: the combination of different state-based heuristics and the use of parallel processes to diversify the search in different directions when a plateau is found. To evaluate the performance of FLAP2, we have made a comparison with four state-of-the-art planners: SGPlan, YAHSP2, Temporal Fast Downward and OPTIC. Experimental results show that FLAP2 presents a very acceptable trade-off between time and quality and a high coverage on the current planning benchmarks.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference24 articles.

1. Khouadjia M. , Schoenauer M. , Vidal V. , Dréo J. & Savéant P. 2013. Multi-objective AI planning: comparing aggregation and pareto approaches. In Proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP), 7832: 202–213.

2. Vidal V. 2011. YAHSP2: keep it simple, stupid. In Proceedings of the 7th International Planning Competition (IPC-2011), 83–90.

3. Merge-and-Shrink Abstraction

4. FLAP: applying least-commitment in forward-chaining planning;Sapena;AI Communications,2015

5. Domshlak C. , Karpas E. & Markovitch S. 2010. To max or not to max: online learning for speeding up optimal planning. In AAAI Conference on Artificial Intelligence.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Task Scheduling for Heterogeneous Robot Teams Under Capability Uncertainty;IEEE Transactions on Robotics;2023-04

2. Forward Chaining Hierarchical Partial-Order Planning;Algorithmic Foundations of Robotics XIV;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3