Optimizing large knowledge networks in spatial computers

Author:

Pacher Dominic,Binna Robert,Specht Günther

Abstract

AbstractThis paper presents a novel concept of a Spatially Aware Graph Store, which realizes a Graph Store on top of a spatial computer architecture to manage graphs in one, two or three physical dimensions. In this environment, the physical distance between graph nodes strongly affects graph traversal performance. Consequently, a Spatially Aware Graph Store needs to minimize these distances to operate efficiently. We show that this minimization can be achieved in two ways. First, by increasing the dimensionality of the spatial computer and second by applying optimization methods. For the latter, this work introduces a novel Mid Point Optimization method to quickly optimize large real-world knowledge networks by rearranging nodes in a way that distances between linked nodes are reduced. In addition, a Local Optimization method is subsequently applied to refine the result. Finally, the Node Decomposition method is presented that splits nodes with many edges into several smaller nodes to achieve a further reduction of distances between linked nodes.Our results show that the overall distances between nodes can be reduced by three orders of magnitude for 3D in comparison to one-dimensional (1D) Spatially Aware Graph Stores. The suggested Mid Point Optimization method achieves a reduction by another order of magnitude. In a 3D spatial computer, Local Optimization is capable of reducing distances by another 20%. However, in 1D and 2D spatial computers it becomes a prohibitive time consuming method. Finally, the Node Decomposition enables an additional distance reduction by 40% in Scale Free Graph Data sets.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3