An overview of the phrase-based statistical machine translation techniques

Author:

Costa-jussà Marta Ruiz

Abstract

AbstractThis work provides a general overview of the statistical machine translation (SMT) scientific field, which is a subfield of machine translation (MT). Specifically, this paper focuses on one of the most popular SMT approaches, that is, the phrase-based system.The phrase-based translation units are typically extracted using statistical criteria, and they are weighted using different models. These models are log-linearly combined in the decoding, which is in charge of choosing the most probable translation. Significant quality improvements have been produced from original phrase-based SMT systems. Among others, the main challenges are reordering, domain adaptation and evaluation.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference106 articles.

1. Phrase-Based Statistical Machine Translation

2. Yamada K. , Knight K. 2002. A decoder for syntax-based statistical MT. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 303–310.

3. Xia F. , McCord M. 2004. Improving a statistical mt system with automatically learned rewrite patterns. In Proceedings of the 20th International Conference on Computational Linguistics, Morristown, 508.

4. Wu H. , Wang H. , Zong C. 2008. Domain adaptation for statistical machine translation with domain dictionary and monolingual corpora. In Proceedings of the 22nd International Conference on Computational Linguistics, Beijing, China, 1, 993–1000.

5. Wu D. 1996. A polynomial-time algorithm for statistical machine translation. In Annual Meeting of the Association for Computational Linguistics, Santa Cruz.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3