Pennisetum ciliare: a review of treatment efficacy, competitive traits, and restoration opportunities

Author:

Farrell Hannah L.ORCID,Gornish Elise S.

Abstract

AbstractBuffelgrass [Pennisetum ciliare (L.) Link] is a drought-tolerant invasive grass that is a threat to native biodiversity in the drylands of the Americas and Australia. Despite efforts from land managers to control P. ciliare, management approaches tend to have mixed success, treatment results can be poorly communicated among entities, and there are few long-term controlled studies. In this literature review, we synthesize data from both peer-reviewed and “gray” literature on the efficacy of management techniques to control P. ciliare and the secondary impacts to native plant communities. Our search resulted in 42 unique sources containing a total of 229 studies that we categorized into 10 treatment types, which included herbicide, seeding, manual removal, fire, grazing, biocontrol, fire + additional treatments, manual removal + additional treatments, herbicide + additional treatments, and herbicide + manual removal. We found that treatments that used multiple techniques in tandem along with follow-up treatments were the most effective at controlling P. ciliare. Fewer than one-third of the studies reported impacts of management on native species, and the most commonly studied treatment (herbicide, N = 130) showed detrimental impacts on native plant communities. However, the average time between treatment and outcome measurement was only 15 mo; we suggest the need for more long-term studies of treatment efficacy and secondary impacts of treatment on the ecosystem. Finally, we conducted a second literature review on P. ciliare biology and traits for mechanisms that allows P. ciliare to alter the invaded environment to facilitate a competitive advantage over native species. We found evidence of self-reinforcing feedbacks of invasion being generated by P. ciliare through its interactions with water availability, nutrient cycling, and disturbance regimes. We developed a conceptual model of P. ciliare based on these feedback loops and offer management considerations based on its invasion dynamics and biology.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3