Using invaded-range species distribution modeling to estimate the potential distribution of Linaria species and their hybrids in the U.S. northern Rockies

Author:

McCartney Kevin R.,Kumar Sunil,Sing Sharlene E.ORCID,Ward Sarah M.ORCID

Abstract

AbstractInvasive populations of Dalmation toadflax [Linaria dalmatica (L.) Mill.] and yellow toadflax (Linaria vulgaris Mill.) are widespread throughout the Intermountain West, where gene flow between these nonnative species is producing vigorous and fertile hybrids. These hybrid toadflax populations are less responsive to herbicides than either parent species, and biocontrol agents routinely released on L. dalmatica and L. vulgaris often fail to establish on hybrid hosts. Early detection of hybrid Linaria populations is therefore essential for effective management, but resources are limited for scouting large expanses of range and wildland. We used species distribution modeling to identify environmentally suitable areas for these invasive Linaria taxa in Montana, Wyoming, and Colorado. Areas suitable for hybrid Linaria establishment were estimated using two different modeling approaches: first, based on known hybrid occurrence and associated environmental conditions, and second, based on zones environmentally suitable for co-occurrence of the parent species. This also allowed comparison of different model outputs, especially relevant when modeling emerging invasives, such as novel hybrids, with minimal occurrence data. Combining the two model outputs identified areas at greatest risk of hybrid Linaria invasion, including parts of north-central Montana, where model estimates indicate the hybrid may spread without prior co-invasion of the parents. Potential hybrid hot spots were also identified in western Montana; northwestern, northeastern, and southeastern Wyoming; and the Western Slope and Front Range of Colorado. Despite relatively few confirmed occurrences of hybrid populations to date, our results indicate that extensive spread of hybrid populations is possible within the studied area. Model-based maps of potential Linaria distributions will allow area weed managers to direct limited resources more effectively for locating and controlling these invaders.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3