Visualising connections between types of polygonal number

Author:

Sarp Umit

Abstract

Figurate numbers are numbers that can be represented by a regular and discrete geometric pattern of evenly-spaced points. Their study has attracted the attention of many mathematicians and scientists since the dawn of mathematical history, including Pythagoras of Samos (582 BC-507 BC), Diophantus of Alexandria (200/214-284/298), Fibonacci (1170-1250), Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), Waclaw Franciszek Sierpińshi (1882-1969) [1]. Although it is not one of the basic topics, it serves many fields of mathematics, such as Number Theory and Geometry. Many special numbers are related to figurate numbers. Polynomial values, some theorems and solutions of Diophantine equations are expressed in figurate numbers and studied [2, 3, 4]. Two-dimensional figurate numbers are known as polygonal numbers. In the early 1990's, polygonal numbers were expressed and visualised with the help of computers [5]. Richard K. Guy asked the question ‘Every number is expressible as the sum of how many polygonal numbers?’ [6]. As can be understood from his study, it is seen that most of the studies conducted are about ordinary polygonal numbers. But Euler proved the ‘generalized pentagonal number theorem’ about partitions [7].

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3