Author:
Zhang Xing,Zheng Jianhua,Yan Ji,Yang Zhenghua,Su Ming,Pu Yudong,Yang Pin,Xie Xufei,Chen Li,Chen Ming,Huang Tianxuan,Jiang Shao’en,Liu Shenye,Yang Jiamin
Abstract
Charged particle diagnostics is one of the required techniques for implosion areal density diagnostics at the SG-III facility. Several proton spectrometers are under development, and some preliminary areal density diagnostics have been carried out. The response of the key detector, CR39, to charged particles was investigated in detail. A new track profile simulation code based on a semi-empirical model was developed. The energy response of the CR39 detector was calibrated with the accelerator protons and alphas from a 241Am source. A proton spectrometer based on the filtered CR39 detector was developed, and D–D primary proton measurements were implemented. A step range filter spectrometer was developed, and preliminary areal density diagnostics was carried out. A wedged range filter spectrometer array made of Si with a higher resolution was designed and developed at the SG-III facility. A particle response simulation code by the Monte Carlo method and a spectra unfolding code were developed. The capability was evaluated in detail by simulations.
Publisher
Cambridge University Press (CUP)
Subject
Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献