Evaluating damage in optical elements using an amplified spontaneous emission beam

Author:

Zhou Qiong,Wang Jiangfeng,Guo Yajing,Liu Dean,Zhu Jianqiang

Abstract

A method to evaluate damage in optical elements with the near field of an amplified spontaneous emission (ASE) beam has been developed. Local peak intensities are generally distributed randomly in the near field of a laser beam. The partial coherence of the ASE source results in a very smooth beam profile. The coherence time of ASE is much less than the pulse width. Small-scale intensity modulations can be smoothed out rapidly within the time of a pulse width. In the experiments, ASE is generated from a multifunctional high-performance Nd:glass system, with a pulse duration of 3 ns, a spectral width (full width at half maximum, FWHM) of 1 nm and an adjustable energy range from 1 to 10 J. The damage thresholds of samples induced by ASE are two to three times higher than those induced by a laser with the same size of test spot. Furthermore, the ASE beam has great potential for the detection of defects over a large area and the conditioning of optical elements.

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of polarization on back-reflected e − e + pair jets from laser-electron collision;Plasma Physics and Controlled Fusion;2019-11-26

2. MicroRNA-373 Promotes Growth and Cellular Invasion in Osteosarcoma Cells by Activation of the PI3K/AKT‐Rac1‐JNK Pathway: The Potential Role in Spinal Osteosarcoma;Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics;2017-07-05

3. The Role of Dysregulated MicroRNA Expression in Lung Cancer;Advances in Experimental Medicine and Biology;2016

4. Laser-induced damage of SiO2and CaF2under 263 nm;Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers;2015-07-14

5. Part-Based Tracking via Salient Collaborating Features;2015 IEEE Winter Conference on Applications of Computer Vision;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3