Assessment of global and local neural network’s performance for model-free estimation of flow angles

Author:

Lerro A.ORCID,de Pasquale L.ORCID

Abstract

AbstractA synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that would significantly affect the synthetic sensor performance. The off-line use of neural networks is not a novelty to model deterministic synthetic flow angle sensors and to mitigate issues arising from real flight applications. A common practice is to train the neural network with corrupted data that are representative of uncertainties of the current application. However, this approach requires accurate tuning on the target aircraft and extensive flight test campaigns, therefore, making the neural network tightly dependent on the specific aircraft. In order to overcome latter issues, this work proposes the use of neural networks to solve a model-free scheme, derived from classical flight mechanics, that is independent from the target aircraft, flight regime and avionics. It is crucial to make use of a training dataset that is not related to any specific aircraft or avionics to preserve the generality of the scheme. Under these circumstances, global and local neural networks are herein compared with an iterative method to assess the neural capabilities to generalise the proposed model-free solver. The final objective of the present work, in fact, is to select the neural technique that can enable a flow angle synthetic sensor to be used on board any flying body at any flight regime without any further training sessions.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3