Evolution mechanism and optimisation of traffic congestion

Author:

Sun FanrongORCID,Xu Xueji,Zhang Huimin,Shen Di,Mu Yao,Chen Yujun

Abstract

AbstractAir route networks can no longer meet operational efficiency requirements because of the rapid growth of complex traffic flows. Machine learning is employed to investigate the evolutionary mechanism of congestion in such networks in view of their high complexity and high density, and a reasonable network optimisation scheme is presented. First, deviations between nominal and actual routes are investigated with reference to radar track data, and a network reflecting actual route operations is constructed using adversarial neural networks. Second, flight time is used to characterise congestion in route networks. Actual network operations are considered, and congestion is defined from the perspective of road traffic engineering. The effects of the operational properties of traffic flows on flight times are analysed to establish various congestion indicators. A gradient boosting model is used to select indicator characteristics and analyse patterns in the variations of indicator values for each flight segment in distinct periods. The indicator–time relationship is leveraged to explore the evolutionary mechanism of congestion in the route network. Third, on the basis of this mechanism, a multiobjective optimisation model of congestion is formulated, and a particle swarm optimisation algorithm is executed to adjust the route passage structure, thereby solving the optimisation model. Finally, calculation validation is conducted using radar track data from the control sector of the Yunnan region. The average flight time in a route segment is 10% shorter in the optimised route network than in the nonoptimised route network, which confirms that the optimisation solution is practicable.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3