Full envelope nonlinear flight controller design for a novel electric VTOL (eVTOL) air taxi

Author:

Suiçmez E.C.ORCID,Kutay A.T.ORCID

Abstract

Abstract On-demand urban air transportation gains popularity in recent years with the introduction of the electric VTOL (eVTOL) aircraft concept. There is an emerging interest in short/medium range eVTOL air taxi considering the critical advantages of electric propulsion (i.e. low noise and carbon emission). Using several electric propulsion systems (distributed electric propulsion (DEP)) has further advantages such as improved redundancy. However, flight controller design becomes more challenging due to highly over-actuated and coupled dynamics. This study defines and resolves flight control problems of a novel DEP eVTOL air taxi. The aircraft has a fixed-wing surface to have aerodynamically efficient cruise flight, and uses only tilting electric propulsion units to achieve full envelope flight control via pure thrust vector control. The aircraft does not have conventional control surfaces such as aileron, rudder or elevator. Using pure thrust vector control has some design benefits, but the control problem becomes more challenging due to the over-actuated and highly coupled dynamics (especially in transition flight). A preliminary flight dynamics model is obtained considering the dominant effects at hover and high-speed forward flight. Hover and forward flight models are blended to simulate the transition dynamics. Two central challenges regarding the flight control are significant nonlinearities in aircraft dynamics during the transition and proper allocation of the thrust vector control specifically in limited control authority (actuator saturation). The former challenge is resolved via designing a sensor-based incremental nonlinear dynamic inversion (INDI) controller to have a single/unified controller covering the wide flight envelope. For the latter one, an optimisation-based control allocation (CA) approach is integrated into the INDI controller. CA requires special attention due to the pure thrust vector control’s highly coupled dynamics. The controller shows satisfactory performance and disturbance rejection characteristics. Moreover, the CA plays a vital role in guaranteeing stable flight in case of severe actuator saturation.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference47 articles.

1. [14] Yang, H. , and Morales, R. , “Robust full-envelope flight control design for an eVTOL vehicle,” AIAA Scitech 2021 Forum, 2021, p. 0254.

2. Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and Angular Acceleration Prediction

3. [10] Finger, D.F. , Braun, C. and Bil, C. A review of configuration design for distributed propulsion transitioning VTOL aircraft, Asia-Pacific International Symposium on Aerospace Technology-APISAT, Korean Soc. for Aeronautical and Space Sciences Seoul, Korea, 2017, pp 3–5.

4. [11] Lilium GmbH, 2023, https://lilium.com/. Accessed on 11 July 2023.

5. Design and flight testing of flight control laws integrating incremental nonlinear dynamic inversion and servo current control;Pollack;AIAA Scitech 2019 Forum,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3