Separated and vortical flow in aircraft aerodynamics: a CFD perspective

Author:

Rizzi A.ORCID

Abstract

AbstractIn the early era of aviation, Frederick Lanchester was both an inventor and a theoretician driven by the need for a theory of flight that would reduce the guesswork in designing new aircraft. His book Aerodynamics in 1907 laid down the early foundations of such a theory. The theory with contributions from others, notably Ludwig Prandtl, was refined to become the basis for the sleek designs of WWII aircraft brought about with little guesswork. New technology changed aircraft design radically with the increased speed of jet propulsion reaching into the transonic range with nonlinear aerodynamics. In the late 1940s and early 1950s substantial guesswork returned to aircraft design. The legacy of Lanchester et al., however, lived on with the development of computational fluid dynamics (CFD) that could guide designers through nonlinear transonic effects. This article presents a historical sketch of how CFD developed, illustrated with examples explaining some of the difficulties overcome in the design of the first-generation swept-wing transonic fighters. The historical study is forensic CFD in search for the likely explanation of the designer’s choice for the wing shape that went into production a long time ago. The capability of current CFD applied to the aerodynamics of aircraft with slender wings is surveyed. The cases discussed involve flow patterns with coherent vortices over hybrid wings and wings of moderate sweep. Vortex-flow aerodynamics pertains to understanding the interaction of concentrated vortices with aircraft components. Modern Reynolds-Averaged Navier-Stokes (RANS) technology is useful to predict attached flow. But vortex interaction with other vortices and breakdown lead to unsteady, largely separated flow which has been found out of scope for RANS. Direct simulation of the Navier-Stokes equations is out of computational reach in the foreseeable future, and the need for better physical modeling is evident. Both cruise performance and stalling characteristics are influenced by strong interactions. Two important aspects of wing-flow physics are discussed: separation from a smooth surface that creates a vortex, and vortex bursting, the abrupt breakdown of a vortex with a subsequent loss of lift. Vortex aerodynamics of not-so-slender wings encounter particularly challenging problems, and it is shown how the design of early-generation operational aircraft surmounted these difficulties. Through use of forensic CFD, the article concludes with two case studies of aerodynamic design: how the Saab J29A wing maintains control authority near stall, and how the Saab J32 mitigates pitch-up instability at high incidence.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3