Adaptive reinforcement learning control for a class of missiles with aerodynamic uncertainties and unmodeled dynamics

Author:

Ning X.,Cao S.,Han B.,Wang Z.ORCID,Yin Y.ORCID

Abstract

AbstractIn this paper, a super-twisting disturbance observer (STDO)-based adaptive reinforcement learning control scheme is proposed for the straight air compound missile system with aerodynamic uncertainties and unmodeled dynamics. Firstly, neural network (NN)-based adaptive reinforcement learning control scheme with actor-critic design is investigated to deal with the tracking problems for the straight gas compound system. The actor NN and the critic NN are utilised to cope with the unmodeled dynamics and approximate the cost function that are related to control input and tracking error, respectively. In other words, the actor NN is used to perform the tracking control behaviours, and the critic NN aims to evaluate the tracking performance and give feedback to actor NN. Moreover, with the aid of the STDO disturbance observer, the problem of the control signal fluctuation caused by the mismatched disturbance can be solved well. Based on the proposed adaptive law and the Lyapunov direct method, the eventually consistent boundedness of the straight gas compound system is proved. Finally, numerical simulations are carried out to demonstrate the feasibility and superiority of the proposed reinforcement learning-based STDO control algorithm.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference27 articles.

1. Sliding-Mode-Based Missile-Integrated Attitude Control Schemes Considering Velocity Change

2. Blended robust control method with lateral thrust and aerodynamic force based on robust trail tracking;Shao;Aero Weapon,2016

3. Design of blended lateral thrust and aerodynamic control system based on terminal sliding mode;Zhao;Navig. Position. Timing,2015

4. Design of missile autopilot based on fuzzy control

5. Design of longitudinal control system for target missiles based on fuzzy adaptive PID control;Dong;2017 29th Chinese Control and Decision Conference (CCDC),2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online reinforcement learning control via discontinuous gradient;International Journal of Adaptive Control and Signal Processing;2024-02-28

2. Fixed‐Time Stable Gradient Flows for Optimal Adaptive Control of Continuous‐Time Nonlinear Systems;International Journal of Intelligent Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3