Abstract
AbstractHelicopter collisions with obstacles are one of the most frequent and most devastating causes of accidents. To avoid these collisions in low-speed operations a “haptic ticker” cue in form of repetitive impulses as a force feedback was designed for an active sidestick. Various design questions were examined in pilot campaigns using a full flight simulator and four test scenarios. As a result, the pilots always knew which distance-based hazard area (green, yellow, red) they were in. Furthermore, the ticker is disruptive and roughly reduces the handling qualities from Level 1 to Level 2. It is therefore primarily activated as a hazard warning and not as a main input to control the distance. As a warning cue the ticker was evaluated as non-disturbing. The force threshold to detect the direction of a tick was determined. With tick strengths above this threshold, the direction is still not recognised at all in around 2% of the ticks. For the remaining ticks, the accuracy with which the direction is recognised is about 15°. In the fourth scenario, obstacles were moved towards the hovering helicopter, potentially forcing a collision. However, with the ticker a collision occurred in less than 4% of the cases, instead of 84% without the ticker. The ticker was rated as very intuitive and worth recommending. When asked how many accidents of this kind could be prevented with this ticker, all five pilots independently estimated 75%.
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. [2] Seidel, C. , Schwartz, I. and Kielhorn, P. Helicopter collision avoidance and brown-out recovery with Hellas, In Proceedings of SPIE, Vol. 71140G, pp 1–8. SPIE, 2008.
2. [14] Müllhäuser, M. and Lusardi, J. , “US-German joint in-flight and simulator evaluation of collective tactile cueing for torque limit avoidance – Shaker vs. soft stop, Presented at the Vertical Flight Society’s 76th Annual Forum & Technology Display, online, Oct. 2020.
3. [10] Fletcher, J.W. et al. UH-60M Upgrade Fly-By-Wire Flight Control Risk Reduction using the RASCAL JUH-60A In-Flight Simulator, Montréal, Canada, May 2008.