Integrated optimization of mixed-model assembly sequence planning and line balancing using Multi-objective Discrete Particle Swarm Optimization

Author:

Ab Rashid Mohd Fadzil Faisae,Tiwari Ashutosh,Hutabarat Windo

Abstract

AbstractRecently, interest in integrated assembly sequence planning (ASP) and assembly line balancing (ALB) began to pick up because of its numerous benefits, such as the larger search space that leads to better solution quality, reduced error rate in planning, and expedited product time-to-market. However, existing research is limited to the simple assembly problem that only runs one homogenous product. This paper therefore models and optimizes the integrated mixed-model ASP and ALB using Multi-objective Discrete Particle Swarm Optimization (MODPSO) concurrently. This is a new variant of the integrated assembly problem. The integrated mixed-model ASP and ALB is modeled using task-based joint precedence graph. In order to test the performance of MODPSO to optimize the integrated mixed-model ASP and ALB, an experiment using a set of 51 test problems with different difficulty levels was conducted. Besides that, MODPSO coefficient tuning was also conducted to identify the best setting so as to optimize the problem. The results from this experiment indicated that the MODPSO algorithm presents a significant improvement in term of solution quality toward Pareto optimal and demonstrates the ability to explore the extreme solutions in the mixed-model assembly optimization search space. The originality of this research is on the new variant of integrated ASP and ALB problem. This paper is the first published research to model and optimize the integrated ASP and ALB research for mixed-model assembly problem.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3