Advantages of surrogate models for architectural design optimization

Author:

Wortmann Thomas,Costa Alberto,Nannicini Giacomo,Schroepfer Thomas

Abstract

AbstractClimate change, resource depletion, and worldwide urbanization feed the demand for more energy and resource-efficient buildings. Increasingly, architectural designers and consultants analyze building designs with easy-to-use simulation tools. To identify design alternatives with good performance, designers often turn to optimization methods. Randomized, metaheuristic methods such as genetic algorithms are popular in the architectural design field. However, are metaheuristics the best approach for architectural design problems that often are complex and ill defined? Metaheuristics may find solutions for well-defined problems, but they do not contribute to a better understanding of a complex design problem. This paper proposes surrogate-based optimization as a method that promotes understanding of the design problem. The surrogate method interpolates a mathematical model from data that relate design parameters to performance criteria. Designers can interact with this model to explore the approximate impact of changing design variables. We apply the radial basis function method, a specific type of surrogate model, to two architectural daylight optimization problems. These case studies, along with results from computational experiments, serve to discuss several advantages of surrogate models. First, surrogate models not only propose good solutions but also allow designers to address issues outside of the formulation of the optimization problem. Instead of accepting a solution presented by the optimization process, designers can improve their understanding of the design problem by interacting with the model. Second, a related advantage is that designers can quickly construct surrogate models from existing simulation results and other knowledge they might possess about the design problem. Designers can thus explore the impact of different evaluation criteria by constructing several models from the same set of data. They also can create models from approximate data and later refine them with more precise simulations. Third, surrogate-based methods typically find global optima orders of magnitude faster than genetic algorithms, especially when the evaluation of design variants requires time-intensive simulations.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3