Knowledge-based support for management of concurrent, multidisciplinary design

Author:

Levitt Raymond E.,Jin Yan,Dym Clive L.

Abstract

Artificial intelligence (AI) applications to design have tended to focus on modeling and automating aspects of single discipline design tasks. Relatively little attention has thus far been devoted to representing the kinds of design ‘metaknowledge’ needed to manage the important interface issues that arise in concurrent design, that is, multidisciplinary design decision-making. This paper provides a view of the process and management of concurrent design and evaluates the potential of two AI approaches—blackboard architectures and co-operative distributed problem-solving (CDPS)—to model and support the concurrent design of complex artifacts. A discussion of the process of multidisciplinary design highlights elements of both sequential and concurrent design decision-making. We identify several kinds of design metaknowledge used by expert managers to: partition the design task for efficient execution by specialists; set appropriate levels of design conservatism for key subsystem specifications; evaluate, limit and selectively communicate design changes across discipline boundaries; and control the sequence and timing of the key (highly constrained and constraining) design decisions for a given type of artifact. We explore the extent to which blackboard and CDPS architectures can provide valid models of and potential decision support for concurrent design by (1) representing design management metaknowledge, and (2) using it to enhance both horizontal (interdisciplinary) and vertical (project life cycle) integration among product design, manufacturing and operations specialists.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference63 articles.

1. A blackboard architecture for control

2. Dym C. L. and Levitt R. E. 1991. Towards the integration of knowledge for engineering modeling and computation. Engineering with Computers, to appear.

3. Hayes-Roth B. and Hayes-Roth F. 1979. Modeling planning as an incremental opportunistic process. In Proceedings of the 1979 International Joint Conference on Artificial Intelligence.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3