Author:
Nagel Jacquelyn K.S.,Nagel Robert L.,Stone Robert B.,McAdams Daniel A.
Abstract
AbstractThe natural world provides numerous cases for inspiration in engineering design. Biological organisms, phenomena, and strategies, which we refer to as biological systems, provide a rich set of analogies. These systems provide insight into sustainable and adaptable design and offer engineers billions of years of valuable experience, which can be used to inspire engineering innovation. This research presents a general method for functionally representing biological systems through systematic design techniques, leading to the conceptualization of biologically inspired engineering designs. Functional representation and abstraction techniques are used to translate biological systems into an engineering context. The goal is to make the biological information accessible to engineering designers who possess varying levels of biological knowledge but have a common understanding of engineering design. Creative or novel engineering designs may then be discovered through connections made between biology and engineering. To assist with making connections between the two domains concept generation techniques that use biological information, engineering knowledge, and automatic concept generation software are employed. Two concept generation approaches are presented that use a biological model to discover corresponding engineering components that mimic the biological system and use a repository of engineering and biological information to discover which biological components inspire functional solutions to fulfill engineering requirements. Discussion includes general guidelines for modeling biological systems at varying levels of fidelity, advantages, limitations, and applications of this research. The modeling methodology and the first approach for concept generation are illustrated by a continuous example of lichen.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering
Reference79 articles.
1. Biologically inspired vision sensor for the detection of higher-level image features;Van der Spiegel;Proc. IEEE Conf. Electron Devices and Solid-State Circuits,2003
2. Automated retrieval of non-engineering domain solutions to engineering problems;Stroble;Proc. CIRP Design Conf. 2009,2009
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献