Quantifying diversity in parametric design: a comparison of possible metrics

Author:

Brown Nathan C.ORCID,Mueller Caitlin T.

Abstract

AbstractTo be useful for architects and related designers searching for creative, expressive forms, performance-based digital tools must generate a diverse range of design solutions. This gives the designer flexibility to choose from a number of high-performing designs based on aesthetic preferences or other priorities. However, there is no single established method for measuring diversity in the context of computational design, especially in the field of architecture. This paper explores different metrics for quantifying diversity in parametric design, which is an increasingly common digital approach to early-stage exploration, and tests how human users perceive these diversity measurements. It first provides a review of existing methodologies for measuring diversity and describes how they can be adapted for parametrically formulated design spaces. This paper then tests how these different metrics align with human perception of design diversity through an online visual survey. Finally, it offers a quantitative comparison between the different methods and a discussion of their attributes and potential applications. In general, the comparison indicates that at the level of diversity difference that becomes visually meaningful to humans, the measurable difference between metrics is small. This paper informs future researchers, developers, and designers about the measurement of diversity in parametric design, and can stimulate further studies into the perception of diversity within sets of design options, as well as new design methodologies that combine architectural novelty and performance.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3