A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics

Author:

ALAG SATNAM,AGOGINO ALICE M.,MORJARIA MAHESH

Abstract

In equipment monitoring and diagnostics, it is very important to distinguish between a sensor failure and a system failure. In this paper, we develop a comprehensive methodology based on a hybrid system of AI and statistical techniques. The methodology is designed for monitoring complex equipment systems, which validates the sensor data, associates a degree of validity with each measurement, isolates faulty sensors, estimates the actual values despite faulty measurements, and detects incipient sensor failures. The methodology consists of four steps: redundancy creation, state prediction, sensor measurement validation and fusion, and fault detection through residue change detection. Through these four steps we use the information that can be obtained by looking at: information from a sensor individually, information from the sensor as part of a group of sensors, and the immediate history of the process that is being monitored. The advantage of this methodology is that it can detect multiple sensor failures, both abrupt as well as incipient. It can also detect subtle sensor failures such as drift in calibration and degradation of the sensor. The four-step methodology is applied to data from a gas turbine power plant.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3