A voxel-based representation for evolutionary shape optimization

Author:

BARON PETER,FISHER ROBERT,TUSON ANDREW,MILL FRANK,SHERLOCK ANDREW

Abstract

A voxel-based shape representation when integrated with an evolutionary algorithm offers a number of potential advantages for shape optimization. Topology need not be predefined, geometric constraints are easily imposed and, with adequate resolution, any shape can be approximated to arbitrary accuracy. However, lack of boundary smoothness, length of chromosome, and inclusion of small holes in the final shape have been stated as problems with this representation. This paper describes two experiments performed in an attempt to address some of these problems. First, a design problem with only a small computational cost of evaluating candidate shapes was used as a testbed for designing genetic operators for this shape representation. Second, these operators were refined for a design problem using a more costly finite element evaluation. It was concluded that the voxel representation can, with careful design of genetic operators, be useful in shape optimization.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scoping Review of Voxel-Model Applications to Enable Multi-Domain Data Integration in Architectural Design and Urban Planning;Architecture;2023-03-23

2. Evaluation of a genetic representation for outline shapes;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2017-07-15

3. Evaluation of a Genetic Representation for Outline Shapes;2017

4. Conceptual design automation: Consideration of building materials impact at early stages of AEC design;Advances in Civil, Architectural, Structural and Constructional Engineering;2016-03-11

5. Optimization of arches using genetic algorithm;Computational Optimization and Applications;2007-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3