Author:
BURNESS TIMOTHY C.,LIEBECK MARTIN W.,SHALEV ANER
Abstract
Let $G$ be a finite almost simple group. It is well known that $G$ can be generated by three elements, and in previous work we showed that 6 generators suffice for all maximal subgroups of $G$. In this paper, we consider subgroups at the next level of the subgroup lattice—the so-called second maximal subgroups. We prove that with the possible exception of some families of rank 1 groups of Lie type, the number of generators of every second maximal subgroup of $G$ is bounded by an absolute constant. We also show that such a bound holds without any exceptions if and only if there are only finitely many primes $r$ for which there is a prime power $q$ such that $(q^{r}-1)/(q-1)$ is prime. The latter statement is a formidable open problem in Number Theory. Applications to random generation and polynomial growth are also given.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献