Author:
CHAN MELODY,HADDADAN SHAHRZAD,HOPKINS SAM,MOCI LUCA
Abstract
Thejaggednessof an order ideal$I$in a poset$P$is the number of maximal elements in$I$plus the number of minimal elements of$P$not in$I$. A probability distribution on the set of order ideals of$P$istoggle-symmetricif for every$p\in P$, the probability that$p$is maximal in$I$equals the probability that$p$is minimal not in$I$. In this paper, we prove a formula for the expected jaggedness of an order ideal of $P$under any toggle-symmetric probability distribution when$P$is the poset of boxes in a skew Young diagram. Our result extends the main combinatorial theorem of Chan–López–Pflueger–Teixidor [Trans. Amer. Math. Soc., forthcoming. 2015,arXiv:1506.00516], who used an expected jaggedness computation as a key ingredient to prove an algebro-geometric formula; and it has applications to homomesies, in the sense of Propp–Roby, of the antichain cardinality statistic for order ideals in partially ordered sets.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference18 articles.
1. [4] A. E. Brouwer and A. Schrijver , On the period of an operator, defined on antichains. Mathematisch Centrum, Amsterdam, 1974. Mathematisch Centrum Afdeling Zuivere Wiskunde ZW 24/74.
2. [7] D. Einstein , M. Farber , E. Gunawan , M. Joseph , M. Macauley , J. Propp and S. Rubinstein-Salzedo , ‘Noncrossing partitions, toggles, and homomesies’, Preprint, 2015, arXiv:1510.06362.
3. Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers;Kreweras;Cah. BURO,1965
4. A historical survey of 𝑃-partitions
5. Homomesy in the product of two chains;Propp;Electron. J. Combin.,2015
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献