SPACE OF RICCI FLOWS (II)—PART A: MODULI OF SINGULAR CALABI–YAU SPACES

Author:

CHEN XIUXIONG,WANG BING

Abstract

We establish the compactness of the moduli space of noncollapsed Calabi–Yau spaces with mild singularities. Based on this compactness result, we develop a new approach to study the weak compactness of Riemannian manifolds.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference44 articles.

1. Some isoperimetric inequalities and eigenvalue estimates

2. On the parabolic kernel of the Schrödinger operator

3. [43] G. F. Wei , ‘Manifolds with a lower Ricci curvature bound’, Preprint, arXiv:math/0612107.

4. Space of Ricci Flows I

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Canonical Diffeomorphisms of Manifolds Near Spheres;The Journal of Geometric Analysis;2023-07-12

2. Compactness theory of the space of Super Ricci flows;Inventiones mathematicae;2023-05-12

3. Diameter estimates for long-time solutions of the Kähler–Ricci flow;Geometric and Functional Analysis;2022-10-22

4. Gromov–Hausdorff limits of Kähler manifolds with Ricci curvature bounded below;Geometric and Functional Analysis;2022-03-28

5. A local singularity analysis for the Ricci flow and its applications to Ricci flows with bounded scalar curvature;Calculus of Variations and Partial Differential Equations;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3