Retinoic acid promotes tissue vitamin A status and modulates adipose tissue metabolism of neonatal rats exposed to maternal high-fat diet-induced obesity

Author:

Tan Libo,Zhang Yanqi,Wang Hui,Haberer Heleena

Abstract

Abstract Maternal obesity may compromise the micronutrient status of the offspring. Vitamin A (VA) is an essential micronutrient during neonatal development. Its active metabolite, retinoic acid (RA), is a key regulator of VA homeostasis, which also regulates adipose tissue (AT) development in obese adults. However, its role on VA status and AT metabolism in neonates was unknown and it was determined in the present study. Pregnant Sprague-Dawley rats were randomised to a normal fat diet (NFD) or a high fat diet (HFD). From postnatal day 5 (P5) to P20, half of the HFD pups received oral RA every 3 d (HFDRA group). NFD pups and the remaining HFD pups (HFD group) received placebo. Six hours after dosing on P8, P14 and P20, n 4 pups per group were euthanised for different measures. It was found that total retinol concentration in neonatal liver and lung was significantly lower in the HFD group than the NFD group, while the concentrations were significantly increased in the HFDRA group. The HFD group exhibited significantly higher body weight (BW) gain, AT mass, serum leptin and adiponectin, and gene expression of these adipokines in white adipose tissue compared with the NFD group; these measures were significantly reduced in the HFDRA group. BAT UCP2 and UCP3 gene expression were significantly higher in pups receiving RA. In conclusion, repeated RA treatment during the suckling period improved the tissue VA status of neonates exposed to maternal obesity. RA also exerted a regulatory effect on neonatal obesity development by reducing BW gain and adiposity and modulating AT metabolism.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Cambridge University Press (CUP)

Subject

Endocrinology, Diabetes and Metabolism,Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3