FLEXIBLE SOIL MICROBIAL CARBON METABOLISM ACROSS AN ASIAN ELEVATION GRADIENT

Author:

Jiang Yishan,Zhang Dayi,Ostle Nicholas J,Luo ChunlingORCID,Wang Yan,Ding Ping,Cheng ZhinengORCID,Shen Chengde,Zhang Gan

Abstract

ABSTRACTThe function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3