Abstract
Let ψ be a functional of the sample path of a stochastic system driven by a Poisson process with rate λ . It is shown in a very general setting that the expectation of ψ,
E
λ
[ψ], is an analytic function of λ under certain moment conditions. Instead of following the straightforward approach of proving that derivatives of arbitrary order exist and that the Taylor series converges to the correct value, a novel approach consisting in a change of measure argument in conjunction with absolute monotonicity is used. Functionals of non-homogeneous Poisson processes and Wiener processes are also considered and applications to light traffic derivatives are briefly discussed.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献