Abstract
Perturbation analysis is a new technique which yields the sensitivities of system performance measures with respect to parameters based on one sample path of a system. This paper provides some theoretical analysis for this method. A new notion, the realization probability of a perturbation in a closed queueing network, is studied. The elasticity of the expected throughput in a closed Jackson network with respect to the mean service times can be expressed in terms of the steady-state probabilities and realization probabilities in a very simple way. The elasticity of the throughput with respect to the mean service times when the service distributions are perturbed to non-exponential distributions can also be obtained using these realization probabilities. It is proved that the sample elasticity of the throughput obtained by perturbation analysis converges to the elasticity of the expected throughput in steady-state both in mean and with probability 1 as the number of customers served goes to This justifies the existing algorithms based on perturbation analysis which efficiently provide the estimates of elasticities in practice.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献