Author:
Baumstark Volker,Last Günter
Abstract
We consider a stationary Poisson process X of k-flats in ℝd with intensity measure Θ and a measurable set S of k-flats depending on F
1,…,F
n
∈ X, x∈ℝd, and X in a specific equivariant way. If (F
1,…,F
n
,x) is properly sampled (in a ‘typical way’) then Θ(S) has a gamma distribution. This result generalizes and unifies earlier work by Miles (1971), Møller and Zuyev (1996), and Zuyev (1999). As a new example, we will show that the volume of the fundamental region of a typical j-face of a stationary Poisson–Voronoi tessellation is conditionally gamma distributed. This is true in the area-biased and the area-debiased cases. In the first case the shape parameter is not integer valued. As another new example, we will show that the generalized integral-geometric contents of the (area-biased and area-debiased) typical j-face of a Poisson hyperplane tessellation are conditionally gamma distributed. In the isotropic case the contents boil down to the mean breadth of the face.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献