On a continuum percolation model

Author:

Penrose Mathew D.

Abstract

Consider particles placed in space by a Poisson process. Pairs of particles are bonded together, independently of other pairs, with a probability that depends on their separation, leading to the formation of clusters of particles. We prove the existence of a non-trivial critical intensity at which percolation occurs (that is, an infinite cluster forms). We then prove the continuity of the cluster density, or free energy. Also, we derive a formula for the probability that an arbitrary Poisson particle lies in a cluster consisting of k particles (or equivalently, a formula for the density of such clusters), and show that at high Poisson intensity, the probability that an arbitrary Poisson particle is isolated, given that it lies in a finite cluster, approaches 1.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3