Abstract
In Pickard (1976) limit theorems were obtained for the classical Ising model at non-critical points. These determined the asymptotic distribution of the sample nearest-neighbour correlation, thereby providing a basis for statistical inference by confidence intervals. In this paper, these limit theorems are extended to the statistically significant case of different vertical and horizontal interactions. Results at critical points are also obtained. Critical points clearly have the potential to seriously distort statistical inferences, especially in their immediate neighbourhoods. For our Ising model it turns out that such distortion is relatively minor. Surprisingly, in the two-parameter case the correlation between the sufficient statistics exhibits peculiar asymptotic behaviour resulting in a singular covariance matrix at critical points in the central limit theorem. Finally, at critical points, unusual norming constants are required for the central limit theorem, and our results are much more sensitive to the relative rate at which m, n tend to infinity.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献