Abstract
A simple direct proof is given of Minkowski's result that the mean length of the orthogonal projection of a convex set in E
3 onto an isotropic random line is (2π)–1 times the integral of mean curvature over its surface. This proof is generalised to a correspondingly direct derivation of an analogous formula for the mean projection of a convex set in En
onto an isotropic random s-dimensional subspace in En. (The standard derivation of this, and a companion formula, to be found in Bonnesen and Fenchel's classic book on convex sets, is most indirect.) Finally, an alternative short inductive derivation (due to Matheron) of both formulae, by way of Steiner's formula, is presented.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献