Abstract
We consider a real-valued random walk S which drifts to –∞ and is such that E(exp θS
1) < ∞ for some θ > 0, but for which Cramér's condition fails. We investigate the asymptotic tail behaviour of the distributions of the all time maximum, the upwards and downwards first passage times and the last passage times. As an application, we obtain new limit theorems for certain conditional laws.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献