The structure of extremal processes

Author:

Resnick Sidney I.,Rubinovitch Michael

Abstract

An extremal-Fprocess {Y(t);t≧ 0} is defined as the continuous time analogue of sample sequences of maxima of i.i.d. r.v.'s distributed likeFin the same way that processes with stationary independent increments (s.i.i.) are the continuous time analogue of sample sums of i.i.d. r.v.'s with an infinitely divisible distribution. Extremal-F processes are stochastically continuous Markov jump processes which traverse the interval of concentration ofF.Most extremal processes of interest are broad sense equivalent to the largest positive jump of a suitable s.i.i. process and this together with known results from the theory of record values enables one to conclude that the number of jumps ofY(t) in (t1,t2] follows a Poisson distribution with parameter logt2/t1. The time transformationtetgives a new jump process whose jumps occur according to a homogeneous Poisson process of rate 1. This fact leads to information about the jump times and the inter-jump times. WhenFis an extreme value distribution theY-process has special properties. The most important is that ifF(x) = exp {—ex} thenY(t) has an additive structure. This structure plus non parametric techniques permit a variety of conclusions about the limiting behaviour ofY(t) and its jump times.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremal clustering under moderate long range dependence and moderately heavy tails;Stochastic Processes and their Applications;2022-03

2. Convergence of extreme values of Poisson point processes at small times;Extremes;2021-02-17

3. No-Tie Conditions for Large Values of Extremal Processes;A Lifetime of Excursions Through Random Walks and Lévy Processes;2021

4. Small-time almost-sure behaviour of extremal processes;Advances in Applied Probability;2017-06

5. Long-Range Dependence as a Phase Transition;Springer Series in Operations Research and Financial Engineering;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3