Author:
Chin Y. C.,Baddeley A. J.
Abstract
A generalization of Markov point processes is introduced in which interactions occur between connected components of the point pattern. A version of the Hammersley-Clifford characterization theorem is proved which states that a point process is a Markov interacting component process if and only if its density function is a product of interaction terms associated with cliques of connected components. Integrability and superpositional properties of the processes are shown and a pairwise interaction example is used for detailed exploration.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献