Author:
Gianini-Pettitt Jacqueline
Abstract
In one version of the familiar ‘secretary problem’, n rankable individuals appear sequentially in random order, and a selection procedure (stopping rule) is found to minimize the expected rank of the individual selected. It is assumed here that, instead of being a fixed integer n, the total number of individuals present is a bounded random variable N, of known distribution. The form of the optimal stopping rule is given, and for N belonging to a certain class of distributions, depending on n, and such that E(N) → ∞ as n → ∞, some asymptotic results concerning the minimal expected rank are given.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献