Author:
Antonelli Peter L.,Morgan Kenneth,Lathrop G. Mark
Abstract
A new diffusion model for random genetic drift of a two-locus di-allelic system is proposed. The Christoffel velocity field and the intrinsic geometry of the diffusion is computed for the equilibrium surface. It is seen to be radically non-spherical and to depend explicitly on the recombination fraction. The model has not been shown to be a limit of discrete Markov chains. For large values of the recombination, the present model is radically different from that of Ohta and Kimura, which is an approximation to the discrete process of random mating in the limit as the value of the recombination fraction goes to zero.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献