Connectivity of random k-nearest-neighbour graphs

Author:

Balister Paul,Bollobás Béla,Sarkar Amites,Walters Mark

Abstract

Let 𝓅 be a Poisson process of intensity one in a square S n of area n. We construct a random geometric graph G n,k by joining each point of 𝓅 to its kk(n) nearest neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that G n, k is connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that G n, k is connected tends to 1 as n → ∞. They conjectured that the threshold for connectivity is k = (1 + o(1)) log n. In this paper we improve these lower and upper bounds to 0.3043 log n and 0.5139 log n, respectively, disproving this conjecture. We also establish lower and upper bounds of 0.7209 log n and 0.9967 log n for the directed version of this problem. A related question concerns coverage. With G n, k as above, we surround each vertex by the smallest (closed) disc containing its k nearest neighbours. We prove that if k ≤ 0.7209 log n then the probability that these discs cover S n tends to 0 as n → ∞ while, if k ≥ 0.9967 log n, then the probability that the discs cover S n tends to 1 as n → ∞.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3