Semi-Infinite Paths of the Two-Dimensional Radial Spanning Tree

Author:

Baccelli François,Coupier David,Tran Viet Chi

Abstract

We study semi-infinite paths of the radial spanning tree (RST) of a Poisson point process in the plane. We first show that the expectation of the number of intersection points between semi-infinite paths and the sphere with radiusrgrows sublinearly withr. Then we prove that in each (deterministic) direction there exists, with probability 1, a unique semi-infinite path, framed by an infinite number of other semi-infinite paths of close asymptotic directions. The set of (random) directions in which there is more than one semi-infinite path is dense in [0, 2π). It corresponds to possible asymptotic directions of competition interfaces. We show that the RST can be decomposed into at most five infinite subtrees directly connected to the root. The interfaces separating these subtrees are studied and simulations are provided.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Central limit theorems for the radial spanning tree;Random Structures & Algorithms;2016-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3