Author:
Baccelli François,Coupier David,Tran Viet Chi
Abstract
We study semi-infinite paths of the radial spanning tree (RST) of a Poisson point process in the plane. We first show that the expectation of the number of intersection points between semi-infinite paths and the sphere with radiusrgrows sublinearly withr. Then we prove that in each (deterministic) direction there exists, with probability 1, a unique semi-infinite path, framed by an infinite number of other semi-infinite paths of close asymptotic directions. The set of (random) directions in which there is more than one semi-infinite path is dense in [0, 2π). It corresponds to possible asymptotic directions of competition interfaces. We show that the RST can be decomposed into at most five infinite subtrees directly connected to the root. The interfaces separating these subtrees are studied and simulations are provided.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献