THE SIZE INHERITED AGE EFFECT ON RADIOCARBON DATES OF ALLUVIAL DEPOSITS: REDATING CHARCOAL FRAGMENTS IN A SAND-BED STREAM, MACDONALD RIVER, NSW, AUSTRALIA

Author:

Wood RachelORCID,King FleurORCID,Esmay RebeccaORCID,Chen QianyangORCID,Schneider LarissaORCID,Dotte-Sarout EmilieORCID,Fallon StewartORCID,Fryirs KirstieORCID,Gillespie RichardORCID,Blong RussellORCID

Abstract

ABSTRACT Radiocarbon dates on charred plant remains are often used to define the chronology of archives such as lake cores and fluvial sequences. However, charcoal is often older than its depositional context because old-wood can be burnt and a range of transport and storage stages exist between the woodland and stream or lake bed (“inherited age”). In 1978, Blong and Gillespie dated four size fractions of charcoal found floating or saltating in the Macdonald River, Australia. They found larger fragments gave younger age estimates, raising the possibility that taphonomic modifications could help identify the youngest fragments. In 1978 each date required 1000s charcoal fragments. This study returns to a sample from the Macdonald River to date individual charcoal fragments and finds the inherited age may be more than 1700 years (mode 250 years) older than the collection date. Taphonomic factors, e.g., size, shape or fungal infestation cannot identify the youngest fragments. Only two fragments on short-lived materials correctly estimated the date of collection. In SE Australia, this study suggests that wood charcoal will overestimate the age of deposition, taphonomic modifications cannot be used to identify which are youngest, and multiple short-lived materials are required to accurately estimate the deposition age.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exotic ceramics from the Murray Islands, Eastern Torres Strait;Journal of Archaeological Science: Reports;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3