Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France

Author:

BOND DAVID,WIGNALL PAUL B.,RACKI GRZEGORZ

Abstract

The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using a multidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis). The results reveal that the development of the Lower Kellwasser Horizon in the early Late rhenana Zone (Frasnian Stage) in German type sections does not always coincide with anoxic events elsewhere in Europe and, in some locations, seafloor oxygenation improves during this interval. Thus, this anoxic event is not universally developed. In contrast, the Upper Kellwasser Horizon, developed in the Late linguiformis Zone (Frasnian Stage) in Germany correlates with a European-wide anoxic event that is manifest as an intensification of anoxia in basinal locations to the point that stable euxinic conditions were developed (for example, in the basins of the Holy Cross Mountains, Poland). The interval also saw the spread of dysoxic waters into very shallow water (for instance, reefal) locations, and it seems reasonable to link the contemporaneous demise of many marine taxa to this phase of intense and widespread anoxia. In basinal locations, euxinic conditions persisted into the earliest Famennian with little change of depositional conditions. Only in the continental margin location of Austria was anoxia not developed at any time in the Late Devonian. Consequently it appears that the Upper Kellwasser anoxic event was an epicontinental seaway phenomenon, caused by the upward expansion of anoxia from deep basinal locales rather than an ‘oceanic’ anoxic event that has spilled laterally into epicontinental settings.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3