Graptoloid evolutionary rates track Ordovician–Silurian global climate change

Author:

COOPER ROGER A.,SADLER PETER M.,MUNNECKE AXEL,CRAMPTON JAMES S.

Abstract

AbstractGraptoloid evolutionary dynamics show a marked contrast from the Ordovician to the Silurian. Subdued extinction and origination rates during the Ordovician give way, during the late Katian, to rates that were highly volatile and of higher mean value through the Silurian, reflecting the significantly shorter lifespan of Silurian species. These patterns are revealed in high-resolution rate curves derived from the CONOP (constrained optimization) scaled and calibrated global composite sequence of 2094 graptoloid species. The end-Ordovician mass depletion was driven primarily by an elevated extinction rate which lasted forc. 1.2 Ma with two main spikes during the Hirnantian. The early Silurian recovery, although initiated by a peak in origination rate, was maintained by a complex interplay of origination and extinction rates, with both rates rising and falling sharply. The global δ13C curve echoes the graptoloid evolutionary rates pattern; the prominent and well-known positive isotope excursions during the Late Ordovician and Silurian lie on or close to times of sharp decline in graptoloid species richness, commonly associated with extinction rate spikes. The graptoloid and isotope data point to a relatively steady marine environment in the Ordovician with mainly background extinction rates, changing during the Katian to a more volatile climatic regime that prevailed through the Silurian, with several sharp extinction episodes triggered by environmental crises. The correlation of graptoloid species diversity with isotopic ratios was positive in the Ordovician and negative in the Silurian, suggesting different causal linkages. Throughout the history of the graptoloid clade all major depletions in species richness except for one were caused by elevated extinction rate rather than decreased origination rate.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3