Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation

Author:

ALDANMAZ E.,YALINIZ M. K.,GÜCTEKIN A.,GÖNCÜOĞLU M. C.

Abstract

AbstractThe Late Triassic to Late Cretaceous age mafic lavas from the Neotethyan suture zone ophiolites in western Turkey exhibit a wide diversity of geochemical signatures, indicating derivation from extremely heterogeneous mantle sources. The rocks as a whole can be divided into three broad subdivisions based on their bulk-rock geochemical characteristics: (1) mid-ocean ridge basalts (MORB) that range in composition from light rare earth element (LREE)-depleted varieties (N-MORB; (La/Sm)N<1) through transitional MORB to LREE enriched types (E-MORB; (La/Sm)N>1); (2) the ocean island basalt (OIB)-type alkaline volcanic rocks with significant enrichment in LILE, HFSE and L-MREE, and a slight depletion in HREE, relative to normal mid-ocean ridge basalts (N-MORB); and (3) the supra-subduction zone (SSZ)-type tholeiites originated from arc mantle sources that are characterized by selective enrichments in fluid-soluble large ion lithophile elements (LILE) and LREE relative to the high field strength elements (HFSE). The formation of MORB tholeiites with variable enrichments and depletions in incompatible trace elements is probably related to the processes of crust generation along an oceanic spreading system, and the observed MORB–OIB associations can be modelled by heterogeneous source contribution and mixing of melts from chemically discrete sources from sub-lithospheric reservoirs. Evaluation of trace element systematics shows that the inferred heterogeneities within the mantle source regions are likely to have originated from continuous processes of formation and destruction of enriched mantle domains by long-term plate recycling, convective mixing and melt extraction. The origin of SSZ-type tholeiites with back-arc basin affinities, on the other hand, can be attributed to the later intra-oceanic subduction and plate convergence which led to the generation of supra-subduction-type oceanic crust as a consequence of imparting a certain extent of subduction component into the mantle melting region. Mixing of melts from a multiply depleted mantle source, which subsequently received variable re-enrichment with a subduction component, is suggested to explain the generation of supra-subduction-type oceanic crust. The geodynamic setting in which much of the SSZ-type ophiolitic extrusive rocks from western Turkey were generated can be described as an arc-basin system that is characterized by an oceanic lithosphere generation most probably associated with melting of mantle material along a supra-subduction-type spreading centre.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference60 articles.

1. Back-arc basin basalt systematics

2. Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes?

3. Melt Generation and Movement beneath Theistareykir, NE Iceland

4. 40Ar–39Ar and Rb–Sr geochronology of high-pressure metamorphism and exhumation history of the Tavşanlı zone, NW Turkey;Sherlock;Contributions to Mineralogy and Petrology,1999

5. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3